PHYSICAL REVIEW B 78, 085312 (2008)

Spin precession due to a non-Abelian spin-orbit gauge field

Jyh-Shinn Yang,' Xiao-Gang He,? Son-Hsien Chen,> and Ching-Ray Chang?*
Unstitute of Optoelectronic Science, National Taiwan Ocean University, Keelung 202, Taiwan
2Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan
(Received 5 February 2008; revised manuscript received 3 June 2008; published 20 August 2008)

We study the spatial behavior of spin precession for traversing electrons in a two-dimensional system with
both the Rashba and Dresselhaus spin-orbit (SO) couplings. Treating the two SO coupling as non-Abelian SO
gauges and performing the unitary gauge transformation for the Hamiltonian, the effect of SO coupling is
exactly represented by a spin-rotation operator providing a convenient framework for studying the property of
ballistic spin transport. We derive the analytical expression for the spin configuration and demonstrate a
classical analog of spin precession. The present approach provides a powerful means (e.g., the spin-rotation
axis, the precession angle, and the cone angle) allowing concrete description of the local spin orientation. In
particular, the spatial features such as the specific transport path with null spin precession and the special
contour with complete cycles of spin precession can be easily identified.
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I. INTRODUCTION

The spin-orbit (SO) coupling attracts much attention not
only for its profound fundamental spin physics but also for
its wide applications in spintronic devices.> The SO cou-
pling is an intrinsic effect and makes the spin of electrons
couple with their orbital motion, thereby providing a
promising means to manipulate the electron spin in
semiconductor® and metallic nanostructures* without an ex-
ternal magnetic field. The dominant SO couplings relevant in
planar semiconductor heterostructures are the Rashba and
Dresselhaus effects. The former stems from the structure in-
version asymmetry (SIA),> which can be controlled by the
gate voltage,*” while the latter is due to the bulk inversion
asymmetry (BIA),? inducing the SO coupling with strength
being material specific. The SO coupling causes the spin-
state splitting acting as an effective magnetic field (EMF)
(Ref. 9) about which the spin of transverse electrons under-
goes precession within a two-dimensional electron gas
(2DEG). This unique property due to the inversion asymme-
try in 2DEG channels opens the possibility of spin-based
devices, e.g., spin filter,'®!! spin-field-effect transistor,”!%!3
and spin pumping.'# To date, the real device remains elusive.
Thus, deeply understanding and properly controlling the be-
havior of spin precession due to the SIA and/or BIA effects
are crucial to the practical realization of such devices.!

In general, the EMF depends on the travel direction of
electrons while in the two special cases of [001] Rashba-
Dresselhaus model with equal Rashba and Dresselhaus cou-
pling constants and the [110] Dresselhaus model, it is inde-
pendent of the travel direction of electron.'®!” As a result (in
such two cases), the precession angle of spin depends only
on the distance traveled along a specific spatial direction.
Accordingly, the electron precesses as a helixlike pattern
called persistent spin helix (PSH).!®!7 In addition, the pattern
of PSH is persistent against any momentum-dependent (but
spin-independent) scatterings. The phenomenon can also be
rationalized in terms of a SU(2) spin-rotation symmetry.
Moreover, it has been shown that the Elliot-Yafet spin-flip
mechanism or the D’yakonov-Perel’ spin-relaxation mecha-
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nism can be suppressed substantially in the above system
ensuring the long lifetime of spin. Thus, the utilization of this
persistency without ballistic conditions required makes the
high-performance transistor possible.!>!3

Earlier study by Jin et al.'® showed that the SO coupling
including Rashba and Dresselhaus terms can be regarded as
SU(2) gauge potential leading to a force acting on the spin
and spin current induced by the Yang-Mills fields. Indepen-
dently, Hatano et al.'! treated the Rashba SO (RSO) coupling
as non-Abelian SU(2) gauge, which imposes spin-dependent
phases on the traveling electron. By neglecting the Dressel-
haus spin-orbit (DSO) coupling and further adjusting the
strength of the RSO coupling and the magnetic field, they
achieve ideal spin-filtering rings capable of producing one
type of spin-polarized electron currents. Chen and Chang!®
recently utilized the non-Abelian SO gauge for the coexist-
ence of RSO and DSO couplings to demonstrate that the
PSH can be easily understood from the perspective of gauge
transformation and found that the quantum square ring func-
tions as a versatile device with four spin states.

In this paper, we shall focus on the spin-precession prop-
erties of conduction electrons in the RSO and DSO coupling
system. There have been indeed similar studies on the
issue;>!> the essential difference here is that the SO coupling
can be neatly represented by a spin-rotation operator by
gauge transformation and then we can study the subject of
spin transport along the straight path without the dynamic
equation involving inflicting lengthy algebra. Based on this
operator, we derive an analytical formula to describe the spin
configuration in more transparency and explicitly specify the
spatial features of spin configuration such as the path with
null spin precession and the contour with complete cycles of
spin precession. The present approach also provides a natural
scheme for investigating the subject of spin interference in
one-dimensional ballistic polygon loops. The remainder of
this paper is organized as follows. In Sec. II we describe the
theoretical approach to perform the gauge transformation and
derive the spin-rotation operator due to the SO coupling. In
Sec. III the expectation value for the injected spin and the
heuristic analog of classical spins for spin precession are
proposed and then followed by the numerical results for the
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spin configuration using a pictorial interpretation with a
highlight of special contours and paths. Finally discussion
and conclusion are in turn made.

II. THEORY

Consider an electron with a definite spin perfectly injected
via an ideal point contact—setting on the origin (0,0)—into
an inversion-asymmetric 2DEG where both the RSO and
DSO couplings are present. The 2DEG is assumed to be
semi-infinite so that the boundary effect is out of consider-
ation. Setting the growth direction of the 2DEG layer to be
[001] and the x and y axes to be [100] and [010], respec-
tively, the Hamiltonian in the presence of the SO coupling
for a single electron of effective mass m is given by

1 B
H= %(p +py)+ (Pya'x_pxo'y)+g(pxa'x_pyo-y)’

(1)

where p, , is the momentum operator of electron within the
2DEG, « and B are the strengths of the RSO and DSO cou-

plings, respectively, and o, are known as the Pauli spin

matrices. The key to the analysis below is to make the linear
term in Eq. (1) disappear. To this end, the following SO
gauge is utilized:'81?

Aso (ALA)) = —(a/cr - Bo,.— ao,+ Bo,). (2)
Performing the unitary transformation to the Hamiltonian

H—U'HU=H,, where U=exp[(ie/hc)f§so'7], the SO
coupled Hamiltonian in Eq. (1) is thus mapped to that of the
free Fermi gas,

L[, e- \?
A \P~ ;ASO - V157 (3)

H,=
07 om

with the constant potential V=(m/h?)(a?+8%) and I, is the

2 X2 unit matrix. Note that the components of gauge Agq do
not commute with each other,

[Aso.nAsoy] = 21( )(a - B)o.. (4)

Thus, we have a non-Abelian gauge field. With this gauge
field, we may construct the local transformation operator

U(f):exp[(ie/ﬁc)fﬁso(?)-d?’] with 7=(x,y). In general,
U(r) depends on the actual integration path c. Nevertheless,
in the case of uniform SO coupling of both Rashba and

Dresselhaus types, since Aso is 1ndependent of position 7, we

have VXASO 0 so that fCASO(r) dr' —ASO 7. This yields
the expression

G =exp[§(£so ~ F)], (5)

with the unitary property U(r)U*(r)=I, ensured by the Her-
mitian A{,=Agq from the definition (2).
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We note that Eq. (3) differs from the free-electron gas

with Hamiltonian H,, only by a gauge (e/c)gso. If the fol-
lowing commutation relation is satisfied:

[Aso,.X + Aso,,Y:As0.%0 + AsoyYo)
= 21( ) (o = B (xyo = x0y)0, =0, (6)

for any x, and y,, we obtain the gauge transformation

U(NHU(N*=H. ()

Consider first an injected electron with initial spin state x;,;
in system H,. Clearly, without any spin-dependent mecha-
nisms, this electron shall retain its spin state as it traverses

the sample. Now, consider Agg, corresponding to the turning
on U(7) so that the electron wave function in the SO cou-
pling system undergoes a gauge transformation of U(7). If
the electron travels along the straight-line path—i.e., the re-
lation (6) is met—the spin polarization of the traversing elec-
tron varies spatially according to

ie -
U(r) Xinj = exp[ E(Aso : ;)1|Xinj = explinClxij-  (8)

Here n=(m/#>)[(?+B)(x*+y?)+4aBxy]"? and C is a 2
X 2 matrix introduced for later convenience with elements
C11=C5»=0 and C,=C5,=—i exp(i¢), where ¢ is defined
by cos é=(ax+By)/b and sin é=—(ay+pBx)/b with b
=(h%/m) 7. As shown below, the symbols 7 and & specify the
two directional angles of quantum-mechanical rotation op-
erators for spin 1/2.

Our purpose now is to make the operator U(7) tractable
and expressible in usual 2 X2 spin matrices. With matrix C
being diagonalizable, it is advisable to decompose the matrix
C in terms of Pauli matrix

Cc=Vuv, )
where
0 —i
U=0,= i o) (10a)
and
\% (1 O) (10b)
“\0 )

Note that matrices C and u have identical eigenvalues *1.
Since the matrix u is Hermitian, it can be diagonalized by a
unitary transformation DuD?, where D is the matrix of eigen-
vectors of u. After some algebra, the unitary matrix D is

easily obtained as
(i 1
D=—| . . (11)
V2\—-i 1

Immediately the diagonal matrix DuD" is just the Pauli ma-
trix o,. With the above results, the unitary equivalent matri-
ces u and Do.D" should have identical spectra.?’ In other
words, the matrix C in Eq. (9) can be rewritten as
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C=(V'D)o.D'V=L"0 L, (12)
where the matrix L (=D'V) is
L] (i ef> 13)
- \/5 -1 e’f ’

With L'=L"", the unitary operator U(7) readily becomes
U(r) = expliL*(no,)L] = L* exp(ino.)L. (14)

Now we can expand the exponential of the matrix ino, as a
power series. Using the properties of Pauli matrices o‘f=IS
and grouping together the coefficients of /; and o, lead to the
expression in 2 X 2 form,

in 0
exp(ino,) = (e() e‘”’) ) (15)

Substituting Eq. (15) back into Eq. (14) and performing two
successive operations of matrix product, the closed form of
unitary operator U(r) is readily obtained,

sin ne’f)
cosy )’

cos

U(7)=< (16)

—sin pe™¢
By comparison with the rotation operator for spin 1/2,% the
operator U(r) clearly shows that the spin of traversing
electron undergoes a rotation about the axis 7
=—(sin &,cos &,0) by a (precession) angle 2. In this sense,
Eq. (16) gives a vivid physical picture of spin precession due
to both SIA and BIA effects. The essence of the above uni-
tary transformation is that we choose a space-dependent spin
coordinate, following the spin precession, in which the
spin-up direction is kept fixed everywhere in the rotating
frame but the other two spin directions are dependent on the
space position 7. Since the spin precesses about the EMF due
to the SO coupling, the above axis 77 would align with the
direction of EMFs that provides the relevant quantum axis of
spin (see explanation below).® Note that the axes 7 due to
Eq. (16) are in accord with those directly obtained from Egq.
(5) for the special cases with @8=0 or =1. Obviously, Eq.
(16) demonstrates that the net spin precession in the xy plane
for traversing electrons depends only on the net displacement
7 relative to the injected point and is independent of any
other property of the electron’s trajectory. Also, the oscilla-
tory dependence of U(F) on x and y that appears for general
a and B is responsible for the spin-dependent phenomena
such as PSH and spin interference.

III. RESULTS AND DISCUSSION

We now demonstrate the spatial features of spin preces-
sion due to different mechanisms of inversion asymmetry by
employing the present strategy without inflicting lengthy al-
gebra. We assume that the electron possesses a conserved
wave vector and is free to move in the 2DEG plane along
any crystallographic direction. To keep things simple, the
case with =0 and =0 is only considered here and the
result for other cases can be inferred by symmetry.

Using Eq. (16), we have vanishing off-diagonal elements
if sin =0 or n=n with n being an integer. This means that
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FIG. 1. (Color online) The x-y contour in the a-8 plane where
the spins all return to their original orientation. Note that the con-
tours in other regimes can be inferred by the mirror symmetry with
respect to the a or B axis and the point symmetry under replace-

ment (a,B)— (—a,—p).

the spin undergoes just the complete cycles of spin preces-
sion as the precession angle is 2nr. Thus, the spin of travers-
ing electron all return exactly to the original orientation after
arriving at these specific positions. Putting #=nm leads to
2,254
n“mh
(a?+ B*)(x* +y?) + dapPxy = R

Then transforming the coordinates x=(p—g)/ \2 and y=(p
+¢)/\2 and introducing the reduced one p=p/R, and §
=q/R, with Ry=mh*/m(a?+ 5%)"?, we arrive at

7 7 _n@+p)

(@-p7 (a+P? (@-p)F

Obviously, Eq. (17) indicates that depending on the coupling
ratio of «/ 3, the special contour may be a family of parallel
lines, concentric circles, or ellipses for the cases with «/f
==+ 1, aB=0, or others, respectively (Fig. 1). Note that the
phase diagram exhibits a mirror symmetry with respect to the
a or B axis and a point symmetry under replacement
(a, B) — (—a,—B). Remarkably, the short axes of ellipses all
align along either =[110] or =[1-10] directions due to the
high spin-precession rate (with the travel distance) along the
four specific paths on which the EMFs due to the BIA and
SIA effects are parallel to each other as explained below.

In order to study the spin configuration, we seek for the
expectation value of the spin components S,=(0), S,=(0,),
and S,=(o) along the three principal directions disregarding
the factor #1/2. Straightforward mathematics yields

(o) =sin O{sin(, + &)sin &£+ cos(27)[cos ¢, — sin(p,
+ &)sin £} — cos 6, sin(27)cos €, (18a)

(17)

(o) =sin O{sin(¢; + &)cos &+ cos(27m)[sin ¢, - sin(¢;
+ &)cos £]} + cos 6, sin(27)sin €, (18b)

(0,) =sin 6, sin(2n)cos(¢p, + &) + cos b, cos(27),
(18c¢)

for an injected spin with arbitrary polarization xip;
=(cos(6,/2),sin(6,/2)exp(id,))’, where 6, and ¢, are the
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polar and azimuthal angles, respectively.?® It is worthy of
note that for the injected spin pointing in the 2DEG plane,
the present expressions (18a)-(18c) are exactly reduced to
Eq. (5) in Ref. 3. Analyzing the origin of the terms in Egs.
(18a)—(18c) further gives the physical insight into the feature
of spin precession. Obviously, the last terms are due to the
out-of-plane component of injected spin and the others are
due to the in-plane one. The first term in the brace, namely,
the component of the injected spin along the spin-rotation
axis, is always kept constant along the straight-line path
while the other terms are sinusoidal functions of 7 or x and
y—exactly accounting for the spin precession. Thus, Egs.
(18a)—(18c¢) significantly demonstrate that the spatial behav-
ior of spin precession under the SO coupling can be treated
as a precession of a classical spin with constant velocity
traveling through the uniform in-plane magnetic field. In
other words (as moving with the traversing spin), we see that
the spin continuously precesses on a cone around the effec-
tive field where the cone angle is the smaller one of |+ &
+m/2| or |+ E=3/2|. One can easily check that the result
(17) can be obtained again when putting n=nw in Eqgs.
(18a)—(18c). Moreover, the spin direction always keeps un-
changed as 6,=m/2 and ¢,=* w/2—-¢; namely, spin injec-
tion into eigenspinor states'>!” leads to the null spin preces-
sion. This fact justifies that the spin-rotation axis specified by
the above unitary matrix U(7) provides one of the quantum
axes of local spin.

As mentioned above, we remark that there are always two
crossed straight lines in the pattern of spin precession except
for the special cases with @/ 8= * 1; one refers to the pair of
straight paths with spin precession having a maximum cone
angle at ¢,=¢, or ¢,—m with ¢,=tan"'[(ap+B)/(a+pp)]
and p=tan(¢,) and the other one is that with null spin pre-
cession at ¢,=¢, = /2 (see Figs. 2 and 3). Note that the
above crossed lines become the Greek cross coincidentally
for the case with =0 and ¢,=0. Interestingly, the crossed
straight lines rotate 7r/2—2¢, counterclockwise as the cou-
pling ratio of B/« increases from zero to infinity. Next, we
shall show that the spatial distribution of spin orientation
along other paths can be satisfactorily described by ways of
the relevant spin-rotation axis and cone angle. A full two-
dimensional spin configuration is plotted pictorially for the
convenience of reference and complements of Ref. 3. As an
explicit illustration, we assume that the electron with spin
polarization along the x axis (i.e., f;=7/2 and ¢,=0) is in-
jected at an angle ¢ relative to the x axis.

Now we start with the pure Rashba case (8=0), i.e., only
the STA effect present. Using Eq. (8), we easily found that
the spin-precession angle is 2mar/#A?, which is proportional
to the travel distance as well as the coupling strength. With
é=—¢, the spin-rotation axis is (y/r,—x/r,0)—or
p X z—always perpendicular to the travel path of traversing
electron and spanning an angle ¢— /2 with the x axis. This
fact implies the well-known feature of the Rashba field,
which is circularly polarized. Such an EMF manifests that
the RSO coupling is independent of the crystallographic di-
rection and is invariant under rotation about the z axis of the
2DEQG plane. The spatial behavior of the Rashba spin preces-
sion (RSP) with space (rather than time) shown in Fig. 2(a)
is clearly observed where the special contours, a family of
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FIG. 2. (Color online) Spin precession due to the (a) pure
Rashba and (b) pure Dresselhaus spin-orbit couplings. The length
unit (a) Ry=7h>/ma or (b) wh*/mp. The injected spin, shown by
the (red) bold arrow on (0,0), is polarized along [100]. The circles
(magenta) denote the contours where the spins all return to their
original orientation. The crossed lines refer to the paths with null
spin precession (dashed, green) or the paths with spin precession
having maximum cone angles (solid, cyan).

concentric circles, and two crossed straight lines are high-
lighted. The RSP along the transport path generally behaves
simply like a pendulum swinging about the Rashba field di-
rection resulting from the spin-rotation axis perpendicular to
the travel direction. While on the ¢, path—the *y axes in
the present case—the spin-rotation axis is parallel to the po-
larization of injected spin; thus, the cone angle becomes zero
and the null spin precession should appear. As the travel path
gradually deviates from the ¢, path, the cone angle increases
linearly and the component of local spin along the spin-
rotation axis decreases accordingly except on the special
contours [the circles in Fig. 2(a)]. Finally, as the travel path
is along the ¢; path or the *x axes, the spin exhibits an
upright precession with a cone angle /2. Note that the
prominent contours where the spins all return to its original
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FIG. 3. (Color online) Spin precession due to the combined
Rashba and Dresselhaus spin-orbit couplings with the coupling ra-
tios (a) a/B=3, (b) 1/3, and (c) 1. The length unit Ry=mh>/mp.
The injected spin, shown by the (red) bold arrow on (0,0), is polar-
ized along [100]. The ellipses or lines (magenta) denote the con-
tours where the spins all return to its original orientation. The
crossed lines refer to the paths with null spin precession (dashed,
green) or the paths with spin precession having maximum cone
angles (solid, cyan).
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orientation are a family of concentric circles due to the rota-
tion symmetry of the Rashba fields.

In the case with only Dresselhaus coupling (a=0), the
spin-precession angle is found to be 2m8r/#2, suggesting the
directional independence of the coupling strength, similar to
the Rashba case. With é=¢—m/2, the spin-rotation axis is
(x/r,—y/r,0) spanning an angle —¢ with the x axis; the di-
rection of effective magnetic fields (EMFs) is no more per-
pendicular to the electron’s momentum except the symmetry-
preferred paths along the directions ¢=+45° (+135°).
Thus, the injected spin encounters another type of EMFs and,
hence, the spatial behavior of Dresselhaus spin precession
(DSP) on the general path is quite different from the Rashba
one [see Fig. 2(b)] as expected. While for ¢=*+45°
(£135°), the DSP exhibits a similar spatial behavior with the
RSP. In addition, the rotational invariance about the z axis,
contrary to the Rashba case, is broken and the crystallo-
graphic direction dependence hence comes into play. Al-
though the DSP appears to be more complicated than the
RSP, the main feature of position-dependent spin orientation
can be still understood in terms of the relevant spin-rotation
axis and cone angle. It is interesting that although the Rashba
and Dresselhaus couplings behave quite differently, the high-
lighted curves in the pattern of DSP look the same as the
RSP with the essential difference being the orientations of
the ¢, and ¢, paths. The occurrence of the same circular
contour with precession angles of 2n7 is reasonably ex-
pected because: (i) the two types of effective-field strengths
exhibit the crystallographic direction independence and (ii)
the spin-precession rate under the fixed EMF has nothing to
do with the angle of injected spin polarization relative to its
rotation axis (just like the precession period of a spinning
top) irrespective of the tilting of its rotation axis.

In the case with coexisted Rashba and Dresselhaus cou-
plings, the spin undergoes precession about the sum of EMFs
due to the two couplings. The spin-rotation axes correspond-
ing to the two couplings are generally not collinear—except
those along the symmetry-preferred paths. As a result, the
spin texture cannot be easily determined without specific
knowledge of the strengths of bulk inversion asymmetry
(BIA) and structure inversion asymmetry (SIA) effects.
However, for the cases dominated by the SIA or BIA effects,
the configuration of spin orientation, as expected, should ex-
hibit the RSP-type or the DSP-type behavior as shown in
Figs. 3(a) and 3(b). Notably, the special contours (see the
curves) become ellipses and their short axes all align along
the [110] direction due to the high spin-precession rate along
the two paths stemming from the enhancement of the Rashba
and Dresselhaus fields. Moreover, the two crossed straight
lines still appear and become tilted toward the diagonal di-
rection. We remark that the small variation in spatial distri-
bution of spin orientation occurs around the point where the
¢, path intersects the special contour. The property can ben-
efit us to enable the high efficiency of the spin device based
on the coherent spin rotation with tolerance of the uncer-
tainty in the rotation angle resulting from the uncertainties in
the detected position, the coupling ratio, and the randomiza-
tion of spin states caused by the spin-related scattering.
When the coupling constants in the Rashba and Dresselhaus
terms are equal (a=/), we obtain that the spin-precession
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angle is (2%2am/f?)|x+y| and that the spin-rotation
axis is constant, ie.,, [1-10] for x+y>0 and
[-110] otherwise. Therefore, the fixed direction of rotation
axis on either side of the 135° (—45°) axis reasonably makes
the spin-precession angle to be merely proportional to the net
displacement along the direction [110]—disregarding the
travel path and the initial spin orientation. As a result, the
special pattern of spin precession, called the persistent spin
helix (PSH),'®!7 is developed as shown in Fig. 3(c). This
pattern exhibits the translation invariance with a period of
spin-precession length 7%%/2ma or the distance between the
adjacent contours with complete spin-precession cycles. A
similar pattern of PSH can also be observed in the case with
a=-;3 (not shown here).

Finally, we demonstrate the convenience of the present
scheme to study the spin interference in one-dimensional
ballistic polygon loops. We consider the tilted square ring
with a side length € (see Fig. 1 in Ref. 19) rotated by an
angle 6 clockwise with respect to the x axis; the lower-left
and the upper-right corners are in contact with two ideal
leads. Assume here that the spin-orbit (SO) coupling exists
only within the loop but it is absent in the two leads. We
focus on the SO coupling induced phase and neglect the
effect of external magnetic fields since the latter just creates
an additional spin-independent phase of the same sign for
both up and down spins. Suppose now that an incident spin
i, from the left lead is split into a pair of partial waves at
the lower-left corner and then each of them follows the
bottom-right path anticlockwise (called path I) or the left-top
path clockwise (called path II). They finally merge at the
upper-right corner and enter into the right lead giving rise to
the spin interference. Using the above spin-rotation operator
U, the outgoing spin iy along the path I (II) can be conve-
niently described by the successive matrix product of U
along the travel path, i.e., ¢y y=Uy i, Where U=U,U_
and Up=U_U, with subscripts + and — denoting the travel
paths with a positive or negative slope, respectively.!’!” Ow-
ing to the unitarity of the matrix U, one can easily perform
the matrix product. We now seek to find the phase difference
between the two paths, or equivalently, the phase factor that
the traversing electron acquires upon circling the tilted
square ring Uphase=UﬁUI. After some algebra, the eigenval-
ues of the phase factor Up,e can be written as
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N=1-2¢[1-cos(2A¢)] = iV/4q(l —q) + ¢° sin’(2A¢),

(19)
where g=sin’ 7, sin® 7_ and tan(A¢)
=(B*-a?)/[2aB cos(26)] with ne=ml[a*+ 3

+2ap sin(260)]"?/#%. Alternatively, the eigenvalues can be
expressed as exp(*ig) since their modulus is unity. Thus,
the phases acquired by the tilted up and down spins are = ¢.
This shift is due to the SO coupling. One can check that
for the normal square ring under pure Rashba coupling
(B=6=0 and Aé=-m/2), the eigenvalues are A=1
—2p *+2i[p(1-p)]""? where p=sin* » with n=mfa/h>. Set-
ting ¢=m/2 or N=1/2, we obtain the same condition for
achieving the ideal filters with Eq. (30) in Ref. 11, i.e.,
sin* 7=1/2, corresponding to the specific Rashba strength
a*=(h?/m€)sin~' (2714,

To conclude, we have performed gauge transformation to
derive the spin-rotation operator and the analytical expres-
sion of the spin precession for an ideally injected spin with
arbitrary polarization under both the Rashba spin-orbit
(RSO) and the Dresselhaus spin-orbit (DSO) couplings. The
above two results are useful for analyzing the spatial behav-
iors of the RSP, the DSP, and the composite cases. In par-
ticular, the unique features of spin-precession patterns can be
easily identified—aided by the spin-rotation axis, the preces-
sion angle, and the cone angle. We found that the RSP and
DSP along general paths behave quite different; however,
they exhibit similar behaviors along the specific directions
¢=*45° and *=135°. This implies that the spatial behaviors
of spin precession, due to inversion asymmetry in the two-
dimensional electron gas (2DEG) along these four directions,
are always invariant. Importantly, we explicitly pointed out
that in the pattern of spin precession, there always exists a
specific path with null spin precession and a special contour
where the spins all return to its original orientation. We ex-
pect that these findings would facilitate to properly manipu-
late the spin polarization in spintronic devices based on ex-
ploiting the SIA and BIA effects.
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